- 8-Bit Serial-In, Parallel-Out Shift
 - High-Current 3-State Outputs Can Drive up to 15 LSTTL Loads
 - Shift Register Has Direct Clear
 - Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs
 description

The 'HC595 contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3 -state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear ($\overline{\mathrm{SRCLR}}$) input, serial (SER) input, and serial outputs for cascading.
Both the shift register clock (RCLK) and storage register clock (SRCLK) are positive-edge triggered. If both clocks are connected together, the shift register is always one clock pulse ahead of the storage register.

The SN54HC595 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC595 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54HC595 . . J OR W PACKAGE
SN74HC595 ... D OR N PACKAGE (TOP VIEW)

SN54HC595... FK PACKAGE (TOP VIEW)

NC - No internal connection
logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the $\mathrm{D}, \mathrm{J}, \mathrm{N}$, and W packages.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range \dagger

Package thermal impedance, θ_{JA} (see Note 2): D package .. $113^{\circ} \mathrm{C} / \mathrm{W}$ N package .. $78^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions

			SN54HC595			SN74HC595			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		2	5	6	2	5	6	V
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
VIL	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0		0.5	0		0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		1.35	0		1.35	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	0		1.8	0		1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
tt^{\ddagger}	Input transition (rise and fall) time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0		1000	0		1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0		500	0		500	
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	0		400	0		400	
T_{A}	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

\ddagger If this device is used in the threshold region (from $\mathrm{V}_{\mathrm{IL}} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\text {IH }} \mathrm{min}=1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		v_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC595		SN74HC595		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	${ }^{\mathrm{I}} \mathrm{OH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{Q}_{\mathrm{H}^{\prime},} \mathrm{I} \mathrm{OH}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{IOH}=-6 \mathrm{~mA}$		3.98	4.3		3.7		3.84			
		$\mathrm{Q}_{\mathrm{H}^{\prime}}, \mathrm{IOH}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{I}_{\mathrm{OH}}=-7.8 \mathrm{~mA}$		5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{l} \mathrm{OL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{Q}_{\mathrm{H}^{\prime}}$, $\mathrm{OL}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{IOL}=6 \mathrm{~mA}$			0.17	0.26		0.4		0.33		
		$\mathrm{Q}_{\mathrm{H}^{\prime}}, \mathrm{IOL}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}, \mathrm{IOL}=7.8 \mathrm{~mA}$			0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
IOZ	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.01	± 0.5		± 10		± 5	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0 ,	$\mathrm{I}=0$	6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			$\begin{gathered} 2 \mathrm{~V} \\ \text { to } 6 \mathrm{~V} \end{gathered}$		3	10		10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC595		SN74HC595		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		2 V	0	6	0	4.2	0	5	MHz
			4.5 V	0	31	0	21	0	25	
			6 V	0	36	0	25	0	29	
${ }_{\text {t }}$ w	Pulse duration	SRCLK or RCLK high or low	2 V	80		120		100		ns
			4.5 V	16		24		20		
			6 V	14		20		17		
		$\overline{\text { SRCLR }}$ low	2 V	80		120		100		
			4.5 V	16		24		20		
			6 V	14		20		17		
${ }_{\text {tsu }}$	Setup time	SER before SRCLK \uparrow	2 V	100		150		125		ns
			4.5 V	20		30		25		
			6 V	17		25		21		
		SRCLK \uparrow before RCLK $\uparrow \dagger$	2 V	75		113		94		
			4.5 V	15		23		19		
			6 V	13		19		16		
		$\overline{\text { SRCLR }}$ low before RCLK \uparrow	2 V	50		75		65		
			4.5 V	10		15		13		
			6 V	9		13		11		
		$\overline{\text { SRCLR }}$ high (inactive) before SRCLK \uparrow	2 V	50		75		60		
			4.5 V	10		15		12		
			6 V	9		13		11		
$t_{\text {h }}$	Hold time, SER after SRCLK \uparrow		2 V	0		0		0		ns
			4.5 V	0		0		0		
			6 V	0		0		0		

\dagger This setup time ensures the output register sees stable data from the shift-register outputs. The clocks may be tied together, in which case the output register is one clock pulse behind the shift register.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC595	SN74HC595		UNIT
				MIN	TYP	MAX	MIN MAX	MIN	MAX	
${ }^{f}$ max			2 V	6	26		4.2	5		MHz
			4.5 V	31	38		21	25		
			6 V	36	42		25	29		
$t_{\text {t }}$	SRCLK	Q^{+}	2 V		50	160	240		200	ns
			4.5 V		17	32	48		40	
			6 V		14	27	41		34	
	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	2 V		50	150	225		187	
			4.5 V		17	30	45		37	
			6 V		14	26	38		32	
tPHL	$\overline{\text { SRCLR }}$	$Q_{H}{ }^{\prime}$	2 V		51	175	261		219	ns
			4.5 V		18	35	52		44	
			6 V		15	30	44		37	
ten	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	2 V		40	150	225		187	ns
			4.5 V		15	30	45		37	
			6 V		13	26	38		32	
${ }^{\text {d }}$ dis	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	2 V		42	200	300		250	ns
			4.5 V		23	40	60		50	
			6 V		20	34	51		43	
t_{t}		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	2 V		28	60	90		75	ns
			4.5 V		8	12	18		15	
			6 V		6	10	15		13	
		$Q_{H}{ }^{\prime}$	2 V		28	75	110		95	
			4.5 V		8	15	22		19	
			6 V		6	13	19		16	

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC595	SN74HC595	UNIT
				MIN	TYP	MAX	MIN MAX	MIN MAX	
$t_{\text {t }}$	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	2 V		60	200	300	250	ns
			4.5 V		22	40	60	50	
			6 V		19	34	51	43	
ten	$\overline{O E}$	$\mathrm{Q}_{\text {A }} \mathrm{Q}_{\mathrm{H}}$	2 V		70	200	298	250	ns
			4.5 V		23	40	60	50	
			6 V		19	34	51	43	
t_{t}		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	2 V		45	210	315	265	ns
			4.5 V		17	42	63	53	
			6 V		13	36	53	45	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {pd }} \quad$ Power dissipation capacitance | No load | 400 | pF |

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS
PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

PARAMETER		RL	C_{L}	S1	S2
ten	tPZH	$1 \mathrm{k} \Omega$	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Closed
	tPZL			Closed	Open
$\mathrm{t}_{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tpLZ			Closed	Open
${ }_{\text {tpd }}$ or t_{t}		-	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Open

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. For clock inputs, $f_{\max }$ is measured when the input duty cycle is 50%.
E. The outputs are measured one at a time with one input transition per measurement.
F. tPLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
G. tPZL and tPZH are the same as ten.
H. $\mathrm{tPLH}^{\text {and }} \mathrm{tPHL}$ are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

